
AD-A265 088

ADA-BASED SOFTWARE ENGINEERING:
UNDERGRADUATE CURRICULUM DEVELOPMENT

FINAL TECHNICAL REPORT

I Grant No. MDA972-92-J-1025

* for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

February 1993

James W. Hooper
Principal Investigator

d'h A•tar Lodgher MAY 2319930
i ~x Co-Principal Investigator

Department of Computer Science and Software Development
Marshall University

Huntington, West Virginia 25755
I (304) 696-5424

The views, opinions, and/or findings contained in this report are those of the authors and
should not be construed as an official Defense Advanced Research Projects Agency
position, policy, or decision, unless so designated by other documentation.

93-12116I ~IIlIhfl hIll!Illlfl

TABLE OF CONTENTS

Page

1. Background and Introduction I

2. The Role of Ada in an Undergraduate Curriculum 4

3. Overview of a B.S. Degree Program in Computer Science and
Software Engineering 5

4. The Software Engineering Courses 6

1 5. Approaches to Student Preparation in Ad"a 7

I 6. Conclusions and Recommendations 9

3 REFERENCES ... 10

3 APPENDICES

A. "Planning for Software Engineering Education Within a
Computer Science Framework at Marshall University"

B. Description of B.S. Degree Program

C. "Teaching Ada at the Senior Level"

D. Syllabus of CS1 taught in Ada

E. "Using Ada for a Team Based Software Engineering
Approach to CS]"

F. Syllabus and team projects for standalone
Software Engineering Course

Ada-Based Software Engineering, DARPA Giant MDA972-92-i-1025, Finai fechnical Report Page i

I

1. BACKGROUND AND INTRODUCTION

The following inset paragraphs, extracted from the proposal for this grant, summarize the
planned efforts.

We propose to plan, develop, and bring about the first offering of, a two-course
sequence in software engineering, emphasizing Ada as design and development language.
The courses will become part of an undergraduate computer science curriculum. The
courses will (tentatively) be designated as:

I Software Design and Development with Ada (SDDA)

Software Engineering (SE)

I In perforwin; this research, we will have two (related) goals:

(a) to improve the computer science curriculum at Marshall University by
implementing this new software engineering sequence, and

(b) to enable other educational institutions to benefit from the work
performed, by packaging course materials and suggestions for introducing
the courses.

The first of the two courses will be a new course at Marshall University --
entitled Software Design and Development with Ada (SDDA). It is envisioned as a junior
or senior level course, and will require as a prerequisite a course in concepts of
programming languages, which at MU is CIS 320 Programming Languages. CIS 320 will
be enhanced to emphasize Ada as an example language, and will require that at least one
sizeable program be developed in Ada. In the early offerings of the new SDDA course,
it will be necessary to emphasize the syntax and semantics of Ada, due to the expected
lack of preparation of the students.

I The existing MU course, CIS 479 Software Engineering, will be revised and
augmented to mesh with the new course SDDA, and especially to emphasize the life
cycle phases not covered in SDDA (i.e., requirements determination, testing, integration,
maintenance). The overall software process will be emphasized (products, methods,
tools), with the benefits of Ada being stressed. The proposed courses will be
project-oriented, and will emphasize a team approach to the solution of realistic
problems.

3 We would prefer to have freshman-level course(s) that are Ada based (i.e., CS
1, CS 2), which could be assumed as prerequisites to SDDA. Since it is not feasible to
bring this about at MU at this time, we will devise and document a plan for adaptingI SDDA at a later time when freshman-level Ada courses are offered. This approach will,
of course, emphasize less the fundamentals of Ada within SDDA, and place greater

I Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report Page 1

I

emphasis on design and development, per se. This alternative plan could be implemented
initially by other institutions, given sufficient resources.

The grant proposal was submitted on September 30, 1991, with the expectation that, if
the grant were award!ed, the period of performance would be January 1, 1992 through August
31, 1992. As it turned out the grant award was for a period of performance from June 1, 1992
through February 28, 1993. In the interim between September 30, 1991 and June 30, 1992,
some very significant events occurred at Marshall University that caused us to take a different
approach than we had originally anticipated. We have achieved a great deal more relative to
computer science and software engineering education at Marshall University than we could have
anticipated. We have, in fact, completely revamped the B.S. degree program in computer
science, instituting a strong emphasis in software engineering in the new curriculum (including
teaching Ada as the introductory language at the freshman level). We are reporting the details
of that work in this Final Technical Report, as well as the specifics of our planned software
engineering courses. Consequently we believe that the results we are reporting will be of much
greater value to other computer science/software engineering educators than the exclusive focus
on two software engineering courses we had originally planned.

At this point we will briefly review the events and planning that led to our new
curriculum. Full details of the planning as of June 1992 are reported in a paper preparea and
presented by James Hooper at the SEI Software Engineering Conference in San Diego, CA in
October 1992 (provided in Appendix A) [Hooper92]. The curriculum is summarized in section
3.

The Department of Computer and Information Sciences (CIS) was within the College of
Business at Marshall University (M.U.) until Fall 1991. It offered a B.S. degree with emphasis
in information systems (business-oriented), as well as a degree emphasizing "main stream"
computer science. The B.B.A. degree in the College of Business also included an option in
Business Information Systems (B.I.S.), with the computing-oriented courses being offered by
CIS. The "main stream" B.S. was patterned after the 1978 ACM curriculum, but was lighter in
science and mathematics. The information systems option was lighter still in science and
mathematics, and required a different set of computing courses at the junior and senior levels.
The B.I.S. had less emphasis on computing courses, and greater emphasis on business courses.
There was some concern among area employers about the capability of some of the graduates.

In September 1991 the CIS Department was moved to the College of Science, and was
tasked by the M.U. President to update and strengthen the curriculum, and emphasize software
engimet.ring. The business-oriented information systems option was dropped from the B.S.
degree program. At the time of this Final Report the Management Department within the
College of Business has proposed a new curriculum for the B.B.A. in B.I.S. Concurrent with
moving the Department, the PI of this grant was designated Chairman of Computer Science
Transition Planning; the Co-PI was very much involved in the curriculum planning also. An
Advisory Panel for Compaiei Science was formed, consisting of senior computing managers
from the region. The overall objective of the effort was to develop a strong academic computer

Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report Page 2

U

science program, with software engineering emphasis, whose graduates would be well prepared
to function as computing professionals in a diversity of organizations. The paper in Appendix
A includes considerable detail on the dynamics of the curriculum design process, including the
role of the Advisory Panel.

In September 1992 the M.U. Faculty Senate gave approval to the new curriculum.
Appendix B contains the Catalog descriptions of the new computer science courses, as well as
a summary of all requirements for the degree, and syllabi for selected courses. Also, in Fall
1992 the name of the department was changed to The Department of Computer Science and
Software Development (CSD), to better convey the balanced emphasis on both computer science3 and software engineering.

We provide some observations on the new curriculum in section 3. In section 2 we give
a discussion of our rationale for selecting Ada as the introductory teaching language at the
freshman level. Section 4 provides a discussion of the software engineering courses in our new
curriculum. Section 5 discusses alternative approaches that may be taken to the preparation of
students in the Ada language within a computer science/software engineering curriculum.
Finally, section 6 offers some summary conclusions and recommendations.

I
I

I
A~ooeqni ýn For

I r A []

I

I

2. THE ROLE OF ADA IN AN UNDERGRADUATE CURRICULUM

We wish to give a brief discussion of our rationale for selecting Ada as the introductory teaching
language at M.U. A great many computer science departments are making changes in their
teaching language at this time. Pascal has been very popular in past years, but is waning at the
present time. At M.U. Pascal had been for many years the introductory language. Pascal
provided the bcst available alternative earlier-on, providing a structured syntax and enforcement
of good programming practices. At the present time Ada offers more desirable syntax and
semantics than Pascal, and is a "marketable" language for professional employment, whereas
Pascal is a "dead end" in that respect. We also consider AdaIPDL attractive for use in
requirements and design specification. In summary, Ada is in our opinion much more supportive
of effective software engineering practice than any other currently-available programming

I language.

Many colleges and universities are changing to C or C + + as their teaching language,
with a few choosing Modula 2 or some other. We do not consider C or C + + to be good
introductory languages, even though they are very important in government and industry. There
is in fact a much greater demand currently for college graduates who are familiar with C than
there is for Ada. We thus feel an obligation to provide considerable exposure of our students to
C and C + +, but we prefer to have them learn C and C + + after they have first learned good
programming practices with Ada.

Thus we began the use of Ada in our freshman courses in Fall 1992. We offer specific
discussion about our approaches to Ada in the following sections.

I
I
I
I

Il Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report Page 4

I

I
I

3. OVERVIEW OF A B.S. DEGREE PROGRAM IN COMPUTER SCIENCE AND
SOFTWARE ENGINEERING

Appendix B contains full documentation on our new B.S. degree program in Computer Science
and Software Development. We had the following goals in arriving at the curriculum:

* Meet the CSAB quantitative requirements
* Meet the Computing Curricula 1991 CS requirements
* Have a strong software engineering emphasis
* Provide students practical experience participating in:

-- Team-oriented software projects
0 Development and maintenance of large software systems
0 Formal treatment of life cycle activities--including creation and

documentation of requirements, designs, and code, participation in formal
reviews, change control boards, ...

0 Place strong emphasis on the "systems approach" to software development,
beginning with the very first freshman-level course

0 Provide background and experience in systems engineering as it relates to
software--i.e., embedded systems, hardware/software tradeoffs; simulation,
queuing theory, for use in determining requirements feasibility, performance
evaluation, etc.

0 Emphasize management methods, cost analysis, quality assurance, decision
support systems

0 Emphasize supervised teaching laboratories as part of some courses

We believe we have attained all these goals in the resulting curriculum. We have emphasized
oral and written communications skills, and require a strong foundation in mathematics. We
began the new courses in spring semester 1993, and will continue to phase in the new courses
through spring 1995. The following section describes the software engineering courses in the
new curriculum.

II

I

I Ada-Based Software Engineering, DARPA Grant MDA972-92-J-102S, Final Technical Report Page 5

I

mI 4. THE SOIT WARE ENGINEERING COURSES

As we have noted in earlier sections, from the first freshman course we are emphasizing
software engineering in the new curriculum. An orientation to the software life cycle is given
in the first freshman course. Of course, some courses deal exclusively with software
engineering. There are four such courses, constituting a total of 12 semester hours. Appendix
B contains syllabi for these courses, which are as follows:

CSD 313 Introduction to Systems and Software Engineering
CSD 333 Software Engineering
CSD 493 Senior Team Project Sequence, First Semester
CSD 494 Senior Team Project Sequence, Second Semester

I CSD 313 and CSD 333 correspond approximately to the two courses we proposed to
develop in our grant application (having suggested names Software Design and Development
with Ada, and Software Engineering). Since we were totally redesigning the curriculum, we had
the benefit of being able to design the courses directly into a new curriculum, rather than trying
to "patch up" existing courses.

CSD 313 emphasizes the role of systems engineering methods in requirements
determination, including embedded systems, and emphasis on maintenance. We intend to present
the evolving object-oriented view of requirements specification, as well as the more mature
function-oriented view. CSD 333 emphasizes design, both object-oriented and function-oriented.
Software reuse is emphasized, as well as configuration management, verification and validation,

1, and other issues within the software process. Again, the syllabi in Appendix B provide further
details of these courses.

I CSD 493 and CSD 494 together constitute a full year's experience in carrying out an
entire system and suftware engineering life cycle for a project of realistic size and complexity.
Our intention is that there be a "real" problem, and a "real" customer, with formal
documentation and reviews. While much of this experience will be project oriented, we will also
present new material in lectures that time would not permit in earlier courses, paced to be useful

* in the project work.

I
I
I
I Ada-Based Software Engineering. DARPA Grant MDA972-92-J-1025, Final Technical Report Page 6

I

I
I

5. APPROACHES TO STUDENT PREPARATION IN ADA

As our curriculum now stands Ada is taught at the freshman level, so students coming into our
software engineering courses are already Ada-literate. In this section we discuss our methods and
experience in introducing Ada at the freshman level. For the benefit of educators who may not
be able to teach Ada to their students prior to their participation in software engineering courses,
we also discuss the approach we took prior to changing from Pascal to Ada in our freshman
courses.

Ada was first taught by Professor Lodgher (the Co-PI) in the Fall semester 1991 as part
of the course CIS 320, Programming Languages. Ada was used as an example language to
emphasize modular programming, incorporation of safe programming principles, embedded
programming and for designing large software systems. Ada was then taught as a separate course
at the senior level in the Spring semester 1992 by Professor Lodgher (see Appendix C - paper
presented at the SESCCC 92 on how to teach Ada at the senior level [Lodgher 92]). By this time
the new curriculum was in place and Ada was to be taught at the freshman level from Fall 1992.
Thus the freshman sequence of courses (CSD 119 - Introduction to Computing I, and CSD 120 -
Introduction to Computing II) to be taught using Ada as the programming language, had to be

developed.

It was decided that each of these courses should have a mandatory closed lab component.
The coursesweredes igned to be 4 credit hour courses: three hours of in-class lecture with 2
hours of closed lab work. Part of the summer of 1992 was used in developing the materials for

I the first course (CSD 119). The materials include the preparation of detailed syllabus, choosing
the text book, designing the programming exercises, designing the laboratory manual, the
syllabus, and class assignments (see Appendix D). The laboratory manual ("Computer

I Programming I - Laboratory Manual", by Akhtar Lodgher) is being submitted to DARPA as a
separate deliverable. The major emphasis of the grant proposal was to impart software-
engineering training in Ada and thus it was decided that the materials of the course CSD 119
be prepared with meticulous care. This course was offered in Fall 1992 and many innovative
ideas such as completion of design before code, use of teams, etc., were used in the course (see
Appendix E which contains a copy of [Lodgher 93]).

I The hardware facilities used for programming was a lab of about 30 VT200+ terminals
connected to a DEC VAX machine. The DEC Ada compiler running under the VMS operating
system was used. The university has recently opened a new laboratory equipped with about 25
486-based microcomputers, networked to a server. Currently an Ada compiler is unavailable on
this network, but the university is planning to install one shortly. Another laboratory, equipped
with about 25 386 machines (without hard disk) and networked to a slightly slower server is also
available. It is anticipated that a CASE tool will also be made available on these machines.

3- Prof. Lodgher has applied for an National Science Foundation (NSF) Instrumentation and
Laboratory Improvenment (ILI) grant to equip a laboratory with six networked Sun SPARC

I Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report Page 7

I

workstations. The grant includes the cost of installing an Ada compiler along with a powerful
CASE tool.

In Spring semester 1993, Prof. Hooper served as instructor during the last offering of
I CSD 479 (previously CIS 479). He also taught CIS 479 during Spring 1992. Some incremental

changes to this course were made during these two offerings, with the development/phasing in
of CSD 313 (Introduction to Systems and Software Engineering) and CSD 333 (Software

I Engineering) during academic year 1993-94 in view, and the planned discontinuation of CSD
479. The syllabus for the current (1993) offering of the course is shown in Appendix F, along
with the team project assignments for the last two offerings of this course.

I The changes made during the last two offerings included strong emphasis on Ada. The
textbook (Ian Sommerville's SOFTWARE ENGINEERING, 4th ed., Addison-Wesley, 1992)
was chosen in large measure because of its emphasis on Ada (including an Ada-based program
description language (Ada/PDL)), in addition to its readability and comprehensiveness in treating
modem software engineering issues. This textbook provides an appendix which introduces Ada,I comparing it with Pascal. The appendix also summarizes an Ada/PDL design example. The
instructor spent about one class hour summarizing this material for the benefit of those who had
not yet been exposed to Ada--which was most of the class members. Most of the class members
had previous Pascal experience, which was very helpful. The book chapters on requirements
specification and object-oriented design make use of Ada/PDL as the basis for examples. The
book emphasizes software reuse, including a separate chapter on the topic. Ada is used in this
material as well to illustrate and explain reuse throughout the life cycle. Thus the book's
orientation fits well into our overall strategy to emphasize Ada throughout our curriculum.

I As was mentioned above, Appendix F shows the team projects for the last two offerings
of CIS/CSD 479. In both of these cases the teams were encouraged to make use of Ada/PDL
in determining requirements and high-level design.

For departments that are not yet in position to extensively revise the curriculum 1,o
emphasize software engineering, but who wish to give some exposure to Ada throughout the liftI cycle in a single junior/senior level software engineering course, the approach taken in CIS/CSD
479 has proven by experience to work out rather well. It would be desirable to carry out the
nigh-level design developed in such a course, into detailed design and implementation by use of
Ada. Perhaps some departments may wish to consider a follow-on course which emphasizes
implementation with Ada. In that case the instructor may wish to make use of self-paced
computer-assisted tutorial assistance such as is offered by NSITE Ada, since class time available
for Ada discussion will likely be very limited.

In our revised curriculum, CSD 313 and CSD 313 together w11 accommodate the entire
life cycle, although CSD 313 will not attempt to cover as great scope of material as CSD 479
has attempted. And, as mentioned in the previous section, the senior team project sequence will3- provide further, even more intensive experiences in life cycle activities, including Ada as
implementation language.

I Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report Page 8

6. CONCLUSIONS AND RECOMMENDATIONS

We have been privileged to completely redesign our undergraduate computer science curriculum,
which no doubt is a rare opportunity for any academic department. We have taken advantage
of this opportunity to make software engineering an important, integral part of the new
curriculum. At the same time we have chosen to begin the use of the Ada language as the
introductory language, and as the primary language in our software engineering courses. We
expect these decisions to result in graduates who are well prepared to take their place as
professional computer scientists and software engineers. We have much work remaining as we
phase in our new courses. CSD 313 and CSD 333 will be taught for the first time in academic
year 1993-94, and CSD 493 and CSD 494 will be tatight in academic year 1994-95.

There is no doubt that it is preferrable to be able to study Ada prior to taking software
engineering courses, as is now the cas, in our new curriculum. However, our experience has
shown that advanced students with a good background in programming can learn enough about
Ada while taking a software engineering course to understand how to use Ada/PDL in
requirements and design specification. A follow-on course in implementation with Ada would
be very desirable, giving an opportunity to gain significant exposure to Ada. Use of such tutorial
assistance as is provided by NSITE Ada could help overcome the lack of exposure to Ada earlier
in the program.

We are pleased to be able to provide the results of our curriculum redesign as part of this
submission. We are appreciative for the support from DARPA in this effort, and believe the
grant has resulted in greater leverage than either DARPA or we could have anticipated.

1FI

I
1

I

I
I d-ae otaeEgneig AP rn D929--05 ia ehia eotPg

I

I
I

REFERENCES

I [CC91] Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task
Force; ACM Press/IEEE Computer Society Press.

[CSAB] 1990 Annual Report for the year ending September 30, 1990; Computing
Sciences Accreditation Board, Inc.

[FORD90] 1990 SEI Report on Undergraduate Software Engineering Education,
CMU/SEI-90-TR-3.

[Hooper92] Hooper, James W., "Planning for Software Engineering Education Within a
Computer Science Framework at Marshall University", in Proceedings of The SEI
Software Engineering Education Conference, San Diego, CA, October 1992.

[Lodgher92] Lodgher, Akhtar, 'Teaching Ada at the Senior Level", in Proceedings of the Sixth
Annual Small College Computing Conference, Jefferson City, TN, Nov 1992.

[Lodgher93] Lodgher, Akhtar, and James Hooper, "Using Ada For a Team Based Software
Engineering Approach to CS1 ", in Proceedings of the I Ith Annual National
Conference on Ada Technology, Williamsburg, VA, March i5-18, 1993.

I
I
I

I

I
I
I Ada-Based Software Engineering, DARPA Grant MDA9 7r2-92-J-I025, Final Technical Report Page 10

'I

I
I
I
I
I
I
I
I
IAPEN XA

I "Planning for Software Engineering Education Within

a Computer Science Framework at Marshall University"

I
I
I
U
I
I
I
I Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report

I

III m I l I
|V

~~- . o=, o-•" • • ;

joo

PC L" -0 -0 as
tu~ OS- t

S. .. . € E ,~.'• ". o ...

I ' -

S• m m

' a - I* - I E

In aa (5 .- E J

S" E

I. I I .II
aa - -1 - .

A; OOS

-M

< s

E 0u

I Z

=0I~

4o 04 4

> 0

V -00

u>0 cn >>
0

cl 0=. R*-ro
CL . 40 o o.'. cc.. >

as 0 >C~

:t cm

>0 20. >~

Zo =va -u 'a, r-

PC .a zo j co 00 06

~ ~ ~0 * **

>
I

f-m~ ~ ~ 0 .9 0

fA m .. *--; ~C U U) -a .. 0 § -- 0l Q. w .O

05 Is.@0
06~ 0C a

*~r "C a1 41)~4)50

* cc;~ : o.. 0 00 Cm 3 0 c a , & -a
E4004 Mz o E M.S U IS 2

(a >1 A.* -0 z a .'

u wr- a 0

T -u C -- -2 aOF 0 o 0

-s '. @0 V 0

L3.U. :) > 0: to 0'.*~ .0 E
a)0 0C06W2" 0

II~I0
00

>0. 4)

.00 oo C

0 o

oC- .9 0e
0) C6~ V f30 -o 0P

04 -9 u- S.-5

.2 D2 &.~ c O.

*0 0oa -0 C40 .. u±
CL 0.033 04 Z

70 D.,E.
91 C E

*~O 0 91 E. ~ 0~ 2- 0a C' c. *

14 'E -0 01 t
06 2' -Z

I~ t i 9)9=g ~
.al <~ 02 18 0q)

*~0 ~0
I-I

0 CL *l

oD

go 'a .~'

-0 r00'=.00 ,

I-I Eo. .2 Eo 00
~~ CL 00-5

0~or E .

00.0 OZ0 IQ-r-
-0 04 .0 60) CA MOO

>2U >0 9.. 00 *0 > E
Cf0 02 *0ur

1.. 1 9 u. 4). -E -
00.& ~ E 0 r- a. car o ~ 0

0 t o 41 l o 1o .0

0 8~ f 04)0

13 . i.C ic i

cn o~ 0 0I 0 0
%4)

04 .2

o, Olt~5~

tEu

st 0

g 0

VC 0...0,

C. O~ C .-
'A (a OS~

02 0 'R .51 L"

06- .o oC E0 m

eaa

W. 2. .o = I

- Q =-
- *- . -

*! .. ' U U..

* ,. 0 z - AP

***u> .2 :* Fi
.00 c- aob 0 O

E _ ol-

oo C ju 'ot ---

7S 0 -

m an3e 1 .0 &
.2 rZw =*~. to~0 s

Zo 1: %fr -8
U> 41C 00-.~

0 0 - 0C .

oO p

Ito

iZ *n 5o

Ec d, S . Ic

< :o Lu w U 0 ap 0 -

m cn j&eU IO
0 0-

13, e- so;
r- u0o - 2 Fa

-~-.H U. 2- K

0 LX aC~ 0

- ui C 5C

0-~ Sn *-.C5
-.T 0 .2 n

0 ~ o ~. 0 In -U2. 22 00 z,
g 3U U 4gug

Li 0** a c-** -a* (.4

a 0 0 0 a.
*0 U) r. U

,C~ - a C: Mr
CL SO.~) ' 0

-r
*C S3~o CA ~ 00

*c o so

o~e 0 a 0 0 a m

0L 2C. o~ -! -- ;S :a- 0 = 5Ij a*~~
ao M

V -L

g.0 r - 'A

S . S JO .a

-u .u t3 u CL

to - 000

.6 32

3 V
0 -0 a , 0,

UU 'A -A cnV)V
m <o u u u Q QLU-

0 -6

0 U3 LO U.(2d0f

a~ 0

2 4

C6

20- .2I0I
CL 'u.on Eu u4)

1=4-- 2

U)W e44 ~
-* OE ?8 ' 2 g" .* O

0 C4- 00 - ..
C6 W- - c)

a~uo 0

Io

w- 0

C6 00%

-00

0..
as2

go .55.0 .

U, 42

.8 mo m.. m- n t r
a.,,

.2 E~ j

43 v~ 1 -2O. =aT"
a.. A.

* n 0

I
I
I
I
I
I
I
I
I

i APPENDIX B

Description of B.S. Degree program

I
I
I]
i

i

Adia-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report

i

I

U COMPUTER SCIENCE AND SOFTWARE DEVELOPMENT

U The Department of Computer Science and Software Development (CSD), previously the
Department of Computer and Information Sciences, was transferred from the College of Business

I to the College of Science in 1991. The curriculum was extensively revised and updated, and
now has a strong emphasis on software engineering. The new B.S. degree program emphasizes
the team approach to software development and maintenance. Graduates with this orientation

I are very much in demand by industry and government. The program provides a solid grounding
in modern computer science, including computer architecture, operating systems, algorithms,
and programming languages.

The first offering of courses in the new curriculum began in Spring 1992. As new courses are
offered for the first time each semester, some old courses are gradually being discontinued. All

I majors are strongly advised to stay in close contact with the CSD department during this
transition period. Majors who began their degree programs prior to the beginning of the new
curriculum should obtain handouts from the CSD department office showing which new courses

I to take as replacements for discontinued courses.

B.S DEGREE PROGRAM IN COMPUTER SCIENCE AND SOFrWARE DEVELOPMENT'

PLAN OF STUDY

I -M4 YEAR

Fall Semester SArinn Semester

ENG 101 English Comp 3 ENG 102 English Composition 3I CSD 119 Intro. Computing 1 4 CSD 120 Intro. Computing]1 4
MTH 131 Calculus 1 5 MTH 230 Calculus II 4
Social Science Elective 3 CUM 211 + Lab. Principles of Chem 5

Total 15 Total 16

3 SOPHOMORE YEAR

Fall Semester Syrine Semester

I literature 3 CSD 240 Algorithm Design & Analysis 3
CSD 212 Intro. Computer Engineering 3 CSD 222 Computer Org./Assembly Lang. 3

I MTH 340 Discrete Structures 3 MTH 330 Linear Algebra 3
PHY 211 + Lab Principles of Physics 5 PHY 213 + Lab Principles of Physics 5
ECN 250 Principles of Microeconomics 3 ACC 250H Principles of Accounting 3

Total 17 Total 17

I
'I 1Soae College of Scienlce general requiramenta do not apply to thin program.

JUNIOR YEAR

Fall Semester Sprine Semester

SPH 305 Principles of Comm 3 ENG 354 Technical writing 3
CSD 313 Intro. Systems & Software Engineering 3 CSD 333 Software Engineering 3
CSD 322 Computer Architecture 3 CSD 338 Operating Systems 3
CSD 325 Programming Languages 3 CSD Elective 3
MTH 445 Statistics 3 MTH 443 Numerical Analysis 3
MGT 320 Principles of Management 3

Total 18 Total 15

3 SENIOR YEAR

Fall Semester Spring Semester

CSD 493 Senior Team Project 3 CSD 494 Senior Team Project 3

CSD Elective 3 CSD Elective 3
Social Science 6 Social Science 3

Classics/Philosophy/Religion 3 Free Elective 6

Total 15 Total 15

Note: the following is to appear in the section showing course offerings by department.

COMPUTER SCIENCE AND SOFTWARE DEVELOPMENT (CSD)

I 101 Fundamentals of Computing. 3 hrs. I,11,S.
Computer literacy. Introduction to fundamental concepts and skills of computing. Includes

terminology, control statements, program execution, diskhandling. Hands-on experience in word
processing, spread sheets, databases, electronic mail. (PR: none)

119 Introduction to Computing 1. 4 hrs. I,11,S.
Introduction to the entire system life cycle. Problem Analysis and algorithm development.

Program design, coding, and testing. Introduction to the Ada language. Extensive experience in
programming, including supervised lab sessions. (PR: CSD 101 or equivalent, and high school
algebra)

120 Introduction to Computing H1. 4 hrs. I,11,S.
Continuation of CSD 119, emphasizing data structures (stacks, queues, trees, graphs), and

algorithms for data structure manipulation. Advanced features of Ada. Numerous programming
projects, involving larger, more complex solutions. Professional ethics. (PR: CSD 119; MTH 131
co-requisite)

212 Introduction to Computer Engineering. 3 hrs. I.
Number system, Boolean algebra, Boolean function minimization techniques. Introduction to

digital circuits and design; design and analysis of combinational and sequential circuits,
asynchronous and synchronous circuits. (PR: CSD 120; PHY 211 and MTH 340 co-requisites)

222 Computer Organization and Assembly Language Programming. 3 hrs. H.
Introduction to PC architecture; memory architecture and management. Data representation,

I/O devices. Overview of software systems: assembler, linker, debugger. (PR: CSD 212; PHY
213 co-requisite)

240 Analysis and Design of Algorithms. 3 hrs. H.
Review basic data structures and introduce advanced data structures; algorithm complexity

analysis, identification of efficient methods. Algorithm design techniques (divide and conquer,
backtracking, etc.). Intractable problems, decidability. (PR: CSD 120, MTH 340)

280-283 Special Topics. 1-4; 1-4; 1-4;1-4 hrs. (PR: Permission of Instructor)
313 Introduction to Systems and Software Engineering. 3 hrs. L

The software development and maintenance process, software life cycle, software within a
larger system; requirements analysis and specification; system engineering approaches; automated
tools; requirements analysis/specification team project. (PR: CSD 240)

322 Computer Architecture. 3 hrs. 1.
Introduction to microprocessor; design alternatives, microprogramming, bus structure, memory

organization, serial and parallel port design, alternative computer architecture. (PR: CSD 222,
CSD 240)

325 Introduction to Programming Languages. 3 hrs. I.
Comparative evaluation and use of several languages; syntax and semantics-including

specification; compilation and software engineering issues; control, data, module approaches.
Imperative and functional languages; concurrency, logic, object-oriented approaches. (PR: CSD
222)

333 Software Engineering. 3 hrs. 11.
Review of requirements determination. Functional and object-oriented design; automated tools.

Real-time, reliability, software reuse. Implementation, integration, testing, maintenance.
Verification and validation, configuration management. Team project, large system. (PR:
CSD 313)

338 Operating Systems. 3 hrs. H.
Process management, device and memory marqgement, security, networking, distributed

operating systems. Emphasis on the Unix operating system. Experimental projects using the
C programming language. (PR: CSD 222, CSD 240)

345 Software Development for Business/Management. 3 hrs. H, S.
Software development and maintenance approaches for effective computing in business and

management applications. Programming languages for these applications, including COBOL,
fourth-generation languages. Support environments. Participation in team projects. (PR: CSD
120)

356 Scientific/Engineering Computing and Supercomputing. 3 hrs. I, S.
Software development and maintenance approaches for effective scientific and engineering

computing and supercomputing. Languages for these applications (especially FORTRAN),
including parallel approaches and vectorization. Support environments. Participation in team
proje-is. (PR: CSD 222, CSD 240)

367 Systems Programming. 3 hrs. II.
Principles of systems programming; language translators, ass'.mblers, interpreters, and

compilers. Advanced operating system concepts: management of memory, 1/0, files, processes.
(PR: CSD 338)

409 Software Development for Health Care. 3 hrs. H, S.
Software development and maintenance approaches for the health care industry. Shared

database approaches; instrumentation interfacing and control; inquiry/response methods and
effective user interfaces. Participation in team projects. (PR: CSD 120)

419 Decision Systems. 3 hrs. I, S.
System/software approaches to decision support systems. On-line group decision systems,

knowledge-based systems, interactive user interfacing methods, electronic conferencing and
teleconferencing, statistical software, distance learning/response techniques, trends. Project
participation. (PR: CSD 313 or permission)

429 Introduction to Computer Graphics. 3 hrs. H.
Introduction to underlying theory and techniques of computer graphics. Historical perspective.

Display hardware technology, 2D raster operations, 2D and 3D geometric transformations, and
3D projection and viewing techniques. Project participation. (PR: CSD 338, MTH 330)

439 Introduction to Artificial Intelligence. 3 hrs. I.
Concepts and methods. Heuristic search, planning, hypothesis formation, modeling,

knowledge acquisition and representation. Languages, methodologies, tools. Applications, such
as automatic programming, theorem proving, machine vision, game playing, robots. Project
participation. (PR: CSD 240)

442 Communication Networks and Distributed Systems. 3 hrs. II.
Network structures, architectures, topology. Layers, protocols, interfaces, local area networks.

Coverage of current networks. Distributed processing concepts; architectural tradeoffs,
dist ibuted databases. Operating system and application software issues. Project participation.
(PR: CSD 322, CSD 338)

449 Formal Languages and Automata Theory. 3 hrs. L
Concepts and formalisms of formal languages and automata theory. Fundamental mathematical

concepts. Grammars and corresponding automata. Deterministic parsing of programming
languages. (PR: CSD 240, MTH 340)

457 Database Systems. 3 hrs. H1.3I Basic concepts, semantic models. Data models: object-oriented and relational, lesser emphasis
on network and hierarchical. Query languages and normal forms. Design issues. Security and
integrity issues. (PR: CSD 313, CSD 338)

459 Computer Simulation and Modeling. 3 hrs. I.
Concepts of model building and computer-based discrete simulation. Special-purpose

simulation languages. Experimental design, analysis of results. Statistical aspects, random
number generation. Model validation issues and methods. Project participation. (PR: CSD 313,
MTH 445)

467 Compiler Design. 3 hrs. L
Compilation of modules, expressions, and statements. Organization of a compiler including

compile-time and run-time aspects; symbol tables, lexical analysis, syntax analysis, semantic
analysis, optimization, object-code generation, error diagnostics. Compiler writing tools.
Participation in compiler development project. (PR: CSD 325, CSD 333)

470 Introduction to Applied Automation. 3 hr,, L
Introduction to production economics. Programmable logic control, sensors and actuators,

digital and analog 1/0 design. Introduction to robotics and flexible manufacturing systems. (PR:
CSD 322)

480-483 Special Topics. 1-4; 1-4; 1-4; 1-4 hrs. (PR: Permission of Instructor)
485-488 Independent Study. 1-4; 1-4; 1-4; 1-4 hrs. (Pi: Permission of Instructor)
493 Senior Team Project Sequence, First Semester. 3 hrs. L

With CSD 494, constitutes a year-long capstone team project, carrying out an entire system and
software engineering life cycle for a project of realistic size and complexity. (PR: CSD 322, CSD
333)

494 Senior Team Project Sequence, Second Semester. 3 hrs. H.
A continuation of the project begun in CS] 493. CSD 493 and CSD 494 should be taken in

consecutive semesters of the same academic year. (PR: CSD 493)

I

I COURSE CHANGE/NEW COURSE INFORMATION

I DEPARTMENT AND COURSE NO: Computer Science and Software Development
CSD 119

TITLE: Introduction to Computing I

CREDIT: 4 (Four)I
COURSE DESCRIPTION AND PREREQUISITES:

I Introduction to the entire system life cycle of software development. Problem analysis
and algorithm development. Program design, coding and testing. Introduction to the
Ada programming language. Extensive experience in programming including supervised
lab-sessions.

Prerequisites: CSD 101 (Fundaments of Computing) or equivalent
High School Algebra

E COURSE OFJECTIVES:

1. Introduce algorithmic and computational problem solving
2. Introduce software engineering methodologies for software development
3. Computational implementation of the above two objectives using a high-level5 language

It is important to note that the objective of this course is to teach :he algorithmic and the
computational problem-solving process. Prime emphasis is on the process and not the
high-level language used to implement the process. Only those components of the syntax
of the language will be taught which are necessary for understanding and implementing

Sthe problem-solving process.

I COURSE OUTLINE:

Topics covered in this course include procedural abstraction, control structures, iteration,
recursion, simple basic data types and their representation, introduction to abstract data
types, etc. For each of these topics, specific problems will be studied that enhance the
characteristics involved. These problems will be very carefully chosen. The solution
process of these problems will be studied strictly from a software engineering perspective
- explicit mention of clear specifications, top-down/bottom-up modular design, testing of
design, conversion of design to code and testing of code. The Ada programming
language will be used for programming exercises. Programming assignments and
programming quizzes will be given.

* -1-

I

I COURSE ACTIVITIES AND EVALUATION METHODS:

3 There shall be three lecture hours and two hours of closed lab per week. In the closed
lab, students shall get hands-on practice on programs involving the current topic being
taught. In addition, there shall be an open lab where the students can come anytime and
do their exercises. For every one hour of class, the student will be expected to put in
three to four hours of preparation. One programming assignment and quiz will be given
for every major topic (a maximum of 10 assignments). At least two exams (a midterm
and a final exam) will be conducted.

I TEXT:

Feldman, Michael, and Elliot Koffman, ADA: PROBLEM SOLVING AND PROGRAM
DESIGN, Addison Wesley, 1991

BIBLIOGRAPHY:

I Savitch, Walter, and Charles Petersen, ADA: AN INTRODUCTION TO THE ART
AND SCIENCE OF PROGRAMMING, Benjamin Cummings, 1992

U Volper, Dennis, and Martin Katz, INTRODUCTION TO PROGRAMMING USING
ADA, Prentice Hall, 1992.

U Bryan, Douglas, and Geoffrey Mendal, EXPLORING ADA, VOL 1 AND VOL 2,
Prentice Hall, 1992.

Reinhold, Van Nostrand, ADA QUALITY AND STYLE: GUIDELINES FOR
PROFESSIONAL PROGRAMMERS, 1989

I
I
I
U
I
I

COURSE CHANGE/NEW COURSE INFORMATION

DEPARTMENT AND COURSE NO: Computer Science and Software Development
CSD 120

TITLE: Introduction to Computing II

CREDIT: 4 (Four)

COURSE DESCRIPTION AND PREREQUISITES:

Continuation of CSD 119, with emphasis on data structures (stacks, queues, trees, etc),
and algorithms for data structure manipulation. Advanced features of the Ada
programming language will be used. Numerous programming projects involving larger,
more complex solutions.

Prerequisites: CSD 119 (Introduction to Computing I)
Corequisite or completion of Math 131 (Calculus with Analytic Geometry I)

COURSE OBJECTIVES:

1. Continuation of algorithmic and computational problem solving
2. Use of intermediate level data structures and control structures
3. Continued use of software engineering methodologies for software development

using the above data and control structures
4. Computational implementation of the above objectives using a high-level language

COURSE OUTLINE:

The data structures covered in this course include stacks, queues, and trees. Use of
recursion and abstract data types will be emphasized. These data structures will be used
for applications such as expression evaluation (Polish notation), sorting, searching, tree-
traversal, etc. Simple CASE tools will be used for developing the design. There will be
a continual stress on adhering to the software engineering principles: explicit mention of
clear specifications, top-down/bottom-up modular design, testing of design, conversion
of design to code and testing of code. An introduction to computational complexity and
algorithm analysis will be given. Advanced constructs of the Ada programming language
will be used. Programming assignments of larger complexity and programming quizzes
will be given.

fl

I

I COURSE ACTIVITIES AND EVALUATION METHODS:

I There shall be three lecture hours and two hours of closed lab per week. In the closed
lab, the student shall get hands-on practice on programs involving the current topic being
taught. In addition, there shall be an open lab where the students can come anytime and
do their exercises. For every one hour of class, the student will be expected to put in
three to four hours of preparation. One programming assignment and quiz will be given
for every major topic (a maximum of 5 assignments). At least two exams (a midterm
and a final exam) will be conducted.

I TEXT:

Feldman, Michael, ADA: ADVANCED PROBLEM SOLVING AND PROGRAM
DESIGN, Addison Wesley, 1992 (In print)

I BIBLIOGRAPHY:

Kruse, Robert L., DATE STRUCTURES AND PROGRAM DESIGN, Prentice Hall,
1992

I Tenenbaum, Aaron Y., Langsam, M. Augenstein, DATA STRUCTURES, Prentice Hall,
1992

I
iI

I
I
I
I
I
I
* -2-

I

1 COURSE CHANGE/NEW COURSE INFORMATION

DEPARTMENT AND COURSE NO: Computer Science and Software Development
CSD 313

I TITLE: Introduction to Systems and Software Engineering

I CREDIT: 3 (Three)

I COURSE DESCRIPION AND PREREQUISITES:

The software development and maintenance process, software life cycle, software within
a larger system; requirements analysis and specification; system engineering approaches;
automated tools; requirements analysis/specification team project.

Prerequisites: CSD 240 (Analysis and Design of Algorithms)

U COURSE OBJECTIVES:

1. Introduce the system concept, with software as a part of a larger system
2. Emphasize the importance of a well-defined and enforced process for system and

software development and maintenance, including the team approach
3. Emphasize especially requirements determination and specification
4. Introduce systems engineering methods and tools to assist requirements

determination

I COURSE OUTLINE:

The course will introduce systems engineering and software engineering,and their
interrelationships. A brief history of the field will be studied, including a motivation for
current approaches. The software life cycle will be studied, including phase
interrelationships. The concepts of process and process maturity will be explored.
Especial emphasis will be given to methods and tools for requirements determination.
This will include CASE (computer assisted systems engineering/computer assisted
software engineering) tools and their use. Object-oriented system analysis and
functional-oriented system analysis will be presented. Life-cycle verification and
validation and quality emphasis will be stressed, as will software reuse, human
engineering, trade-off studies, metrics, cost analysis, project management, and risk
analysis. Students will participate in requirements analysis and specification as members

I of small teams.

* -1-

COURSE ACTIVITIES AND EVALUATION METHODS:

This course will consist of three lecture hours per week, and extensive out-of-class team
project participation. As team projects are conducted, formal reviews will be conducted
during class periods, during which teams will review their activities and status, including
specifications. Other students will critique the material presented, and submit suggested
changes. A mid-term exam. and a final exam. will be conducted.

TEXT: (The following textbook is a likely choice at this time--and in any case is
representative of the material to be covered.)

Sage, Andrew P. and James D. Palmer, SOFTWARE SYSTEMS ENGINEERING, John
Wiley and Sons, 1990.

BIBLIOGRAPHY:

Davis, Alan M., SOFTWARE REQUIREMENTS: ANALYSIS AND SPECIFICATION,
Prentice Hall, 1990.

Humphrey, Watts S., MANAGING THE SOFTWARE PROCESS, Addison-Wesley,
1989.

Pressman, Roger S., SOFTWARE ENGINEERING: A PRACTITIONER'S
APPROACH, 3rd ed., 1992.

Selected current journal articles.

-
I
I
I

I

1 -2-

U COURSE CHANGE/NEW COURSE INFORMATION

DEPARTMENT AND COURSE NO: Computer Science and Software Development
CSD 333

TITLE: Software Engineering

U CREDIT: 3 (Three)

I COURSE DESCRIPTION AND PREREQUISITES:

Review of requirements determination. Functional and object-oriented design;
automated tools. Real-time, reliability, software reuse. Implementation, integration,
testing, maintenance. Verification and validation, configuration management. Team
project, large system.

Prerequisites: CSD 313 (Introduction to Systems and Software Engineering)

I COURSE OBJECTIVES:

1. Continue to emphasize the importance of well-defined, repeatable approaches to
software engineering

2. Study functional and object-oriented approaches to software design
3. Emphasize user interface issues
4. Emphasize effective implementation with Ada
5. Study effective methods for integration and testing

I 6. Provide further experience in the team approach to software development

COURSE OUTLINE:

U Review requirements specifications, and introduce both functional and object-oriented
methods for design. Emphasize software reuse as a means to improve productivity and
quality. Emphasize effective user interface techniques. Conduct team activities,
"including the use of CASE (computer assisted software engineering) tools. Present
methods of unit testing, integration, and system testing. Discuss issues of real time,
safety, and configuration management. Further emphasis on software management, and
software maintenance.

I COURSE ACTIVITIES AND EVALUATION METHODS:

This course will consist of three lecture hours per week, and extensive out-of-class team
project participation. As team projects are conducted, formal reviews will be conducted
during class periods, during which teams will review their activities and status, including
designs and code. Other students will critique the material presented, and submit
suggested changes. A mid-term exam. and a final exam. will be conducted.

* -1-

I

I TEXT: (The following textbook is a likely choice at this time--and in any case is
representative of the material to be covered.)

Sommerville, Ian, SOFTWARE ENGINEERING, 4th ed., 1992.I
BIBLIOGRAPHY:

I Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen, OBJECT-ORIENTED MODELING AND DESIGN, Prentice Hall, 1991.

-- Booch, Grady, SOFTWARE ENGINEERING WITH ADA, 3rd ed., Benjamin/
Cummings, 1992.

Selected current journal articles.

I
I

-2I

COURSE CHANGE/NEW COURSE INFORMATION

DEPARTMENT AND COURSE NO: Computer Science and Software Development
CSD 493

TITLE: Senior Team Project Sequence, First Semester

CREDIT: 3 (Three)

COURSE DESCRIIEMON AND PREREQUISITES:

With CSD 494, constitutes a year-long capstone team project, carrying out an entire
system and software engineering life cycle for a project of realictic size and complexity.

Prerequisites: CSD 322 (Computer Architecture), CSD 333 (Software Engineering)

COURSE OBJECTIVES:

The objectives for CSD 493 and CSD 494 are as follows:

1. Provide a realistic experience for seniors in large-scale software development and
maintenance.

2. Have the students work on a "real" problem, for a "real" customer, thus help
prepare them for effective performance in the workplace

3. Give the students the opportunity to apply much of what they have studied in their
earlier courses

COURSE OUTLINE:

CSD 493 and CSD 494 together will provide the opportunity for the students to apply
the methods and automated tools they have previously studied to a large-scale, realistic
problem, and to interact with a "customer" in a realistic way. The entire life cycle of
software development will be carried out, and the students will have some experience
in performing maintenance on existing software. Some experience will be gained in
software reuse. Production of various documents, and preparation for and participation
in formal reviews, will be part of the experience. The instructor will present lectures
on advanced software engineering material for which there was not time in earlier
courses, paced to be useful in the team project. This will include formal methods,
detailed configuration management procedures, IEEE and U.S. Department of Defense
standards for software engineering activities and products, further study of cost modeling
and metrics, additional emphasis on system testing, and emphasis on the Software
Engineering Institute's process evaluation and improvement methods.3 -Il-

COURSE ACTIVITIES AND EVALUATION METHODS:

Each of CSD 493 and CSD 494 will consist of approximately 1.5 lecture hours per week,
with approximately 1.5 class hours per week being devoted to formal reviews and
walkthroughs, and interaction with the instructor on the work underway. Extensive
out-of-class team project work will be necessary. The project work in CSD 493 and
CSD 494 will be a continuum, with the ending point of CSD 493 corresponding to a
major life cycle milestone (e.g., preliminary design complete). A mid-term exam. and
a final exam. will be conducted in each of CSD 493 and CSD 494.

TEXT:

The textbooks for CSD 313 and CSD 333 will be used for reference and additional
lecture material in CSD 493 and CSD 494.

BIBLIOGRAPHY:

The reference books for CSD 313 and CSD 333 are applicable to CSD 493 and CSD
494.

Additionally, IEEE standards documents and DOD-STD-2167A (Department of Defense
Software Engineering Standards) will be used for reference.

Also, one or more books on configuration management will be used, as will current
material from the Software Engineering Institute, and selected current journal articles.

I

3 -2-

I

U COURSE CHANGE/NEW COURSE INFORMATION

I
DEPARTMENT AND COURSE NO: Computer Science and Software Development

CSD 494

TITLE: Senior Team Project Sequence, Second Semester

E CREDIT: 3 (Three)

I COURSE DESCRIPTION AND PREREQUISITES:

A continuation of the project begun in CSD 493. CSD 493 and CSD 494 should be
taken in consecutive semesters of the same academic year.

Prerequisite: CSD 493 (Senior Team Project Sequence, First Semester)

I COURSE OBJECTIVES:

The objectives for CSD 493 and CSD 494 are as follows:

I 1. Provide a realistic experience for seniors in large-scale software development and
maintenance.

2. Have the students work on a "real" problem, for a "real" customer, thus help
prepare them for effective performance in the workplace

3. Give the students the opportunity to apply much of what they have studied in their3 earlier courses

I COURSE OUTLINE:

CSD 493 and CSD 494 together will provide the opportunity for the students to apply
the methods and automated tools they have previously studied to a large-scale, realisticI problem, and to interact with a "customer" in a realistic way. The entire life cycle of
software development will be carried out, and the students will have some experience
in performing maintenance on existing software. Some experience will be gained inU software reuse. Production of various documents, and preparation for and participation
in formal reviews, will be part of the experience. The instructor will present lectures
on advanced software engineering material for which there was not time in earlier
courses, paced to be useful in the team project. This will include formal methods,
detailed configuration management procedures, IEEE and U.S. Department of Defense
standards for software engineering activities and products, further study of cost modeling
and metrics, additional emphasis on system testing, and emphasis on the Software
Engineering Institute's process evaluation and improvement methods.3 1--

COURSE ACTIVITIES AND EVALUATION METHODS:

Each of CSD 493 and CSD 494 will consist of approximately 1.5 lecture hours per week,
with approximately 1.5 class hours per week being devoted to formal reviews and
walkthroughs, and interaction with the instructor on the work underway. Extensive
out-of-class team project work will be necessary. The project work in CSD 493 and
CSD 494 will be a continuum, with the ending point of CSD 493 corresponding to a
major life cycle milestone (e.g., preliminary design complete). A mid-term exam. and
a final exam. will be conducted in each of CSD 493 and CSD 494.

TEXT:

I The textbooks for CSD 313 and CSD 333 will be used for reference and additional
lecture material in CSD 493 and CSD 494.

I BIBLIOGRAPHY:

The reference books for CSD 313 and CSD 333 are applicable to CSD 493 and CSD
494.

Additionally, IEEE standards documents and DoD-STD-2167A (Department of Defense
Software Engineering Standards) will be used for reference.

Also, one or more books on configuration management will be used, as will current
material from the Software Engineering Institute, and selected current journal articles.

I
I
I
I
I
I
I -2-

APPENDIX C

"Teaching at the Senior Level"

Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report

I

I TEACHING ADA AT THE SENIOR LEVEL'

U Akhtar Lodgher, Ph.D
Department of Computer and Information Sciences

Marshall University
Huntington, WV - 25755

Email: CIS005@MARSHALL.WVNET.EDU
Phone: (304)-696-2695, Fax: (304)-696-4646

IINTRODUCTION
The requirements of teaching Ada at the senior level are different than teaching Ada at

the introductory level. At the introductoiv level, the emphasis is more on the problem solving
skills, and hence only those parts of the language are used which are necessary for building such
skills. At the senior level however, the studc nts are well trained in problem solving skills. More
emphasis must thus be placed on learning tl'e variations in syntax. Also, since Ada has so many
additional features (compared to other imper ative languages) such as packages, generics, tasking,
low-level representation, and exceptions, a thorough base of each of these features must also be
taught. In this paper, the structure and the contents of the various aspects of such a course,
designed and taught by the author, are discussed.

I APPROACH
Since the amount of material to be covered is large, a "hands-on" approach to teaching

is used. This means that the instructor have the capability of showing "real" Ada programs,
modifying them and executing them in the class. This is accomplished with the use of an
overhead video projector. A lot of writing on the black board is avoided by using class notes in
electronic form. Class notes are made using a word processor, and customized for every class
(unlike overhead transparencies). The beauty of this approach is that example programs and
notes from various sources could be scanned electronically and mixed according to the
instructor's style. The notes are made available to the students before class (public files on a
mainframe system). This enables them to get printouts, and spend time listening in class rather
than writing notes and listening.

There is not a single specific text book that covers all the above topics in the detail
required. There are the introductory books (such as Feldman and Koffmarn's Ada: Problem
solving and program design, and Savitch and Petersen's An introduction to the art and science3 of programming) which have many example programs and include a program disk. This makes
them an easy source to draw sample programs from. However, the advanced topics are not
covered, and one has to rely on books such as Booch's Software Engineering with Ada or
Gehani's Ada: An advanced introduction. Such books generally do not provide program cisks.
If they do, the example programs which explain a particular concept of the language syntax or
semantics are program segments, not complete programs. This makes it especially hard for the
"hands-on" approach of modifying and executing programs, forcing the instructor to spend more

1I Presented at the Sixth Southeastern Small College Computing Conference,
Nov 6-7, 1992, Jeffer3on City, TN.

I

U time typing or scanning the programs.
One of the biggest advantage of the "hands-on" approach is that motivation of the3 students is kept high, and they are forced to be alert in class. Questions such as "What will

happen if such and such" are answered by very quickly implementing the question in a program,
executing the program, and displaying the results. This increases retention. The use of electronic
notes gives the capability of switching between the notes and programs. Once a particular syntax
or semantic concept is explained, an example program emphasizing that concept can be presented
and executed.

However, the disadvantage of using sample programs from different sources is that each
author follows an individual style of programming. The style of some of the programs could be
considered deviant from the accepted style. Since most students have the attitude of "do what
you see", presenting such programs to them would cultivate bad style. Thus, some effort must
be spent in converting such deviant programs into an acceptable form before presentadion.

I COURSE CONTENTS AND WEEKLY TOPICS
The contents are discussed for a 15 week semester. The course is divided into two parts:

the introductory part and the advanced part.
The introductory part is covered in the first seven weeks and includes the following topics

I (in order): introduction to the language, data types (subtypes and attributes), input/output
packages, procedures and functions, control structures (selection and looping), introduction to
exceptions, a.'rays, records (variant) and access types. The students are seniors and are familiar
with each of these concepts in some form or another. Thus more emphasis is placed on the
syntax of these structures. However, the concepts of subtypes, attributes, and exceptions are
completely new and thus required more explanation time. Each of the other features have a
difference (an enhancement when compared to Pascal) in implementation, such as slices in arrays
and variations in the variant record structure. Example programs that use these newer
capabilities are used for explanation.

The advanced part is covered in the next eight weeks and the following topics (in order)
are covered: packages, generics, tasking and low-level representation. About two weeks are
spent on each topic. The introduction of packages introduces the concept of process modularity3 over a set of subprograms and the concept of separate compilation units. The propagation of
exceptions through different packages is introduced at this point. Example programs that explain
each of these concepts are essential. Generics introduce the concept of passing data types as
parameters. Tasking introduces the concept of parallel processing. Due to the complex nature
of the concepts of tasking it is discussed in a different section. Finally, low-level (machine)
representation introduces concepts of accessing memory locations through representation
attributes, representation clauses and pragmas. Proper implementation of each of these concepts
is emphasized by using example programs.

I TASKING
Tasking concepts are divided into simple, simple rendezevous, transfer of data on3 rendezevous, selective wait, conditional entry and task attributes.
Simple tasking introduces concepts of subprograms running in parallel, without any

interaction. It brings out the behaviour of the software or hardware platform (which is generally!2
!A

I

I sequential) on parallel programs. Time-slicing is emphasized by varying the execution time of
each subprogram. The syntax involved is explained.

Simple rendezevous introduces the concept of one task waiting for another for a
"rendezevous". Programs which show examples of different situations in which a rendezevous
can occur, or not occur (tasking error) are used. The effect ot loops and the use of counters and

I delays to track the sequence of calls, is essential.
Transfer of data is possible at rendezevous and the use of the three parameter modes is

explained with the use of appropriate programs. It is also possible that an acceptor task have
more than one (multiple) accept calls.

Selective wait is the concept of selecting a particular task from a pool of calling tasks.
Variations include guarded selective wait, tasks with loops, use of the ELSE, DELAY,
TERMINATE and ABORT statements. Various combinations of each of these variations is
essential for a proper understanding. Also, some combinations do not work and the reasons for
their behaviour is also explained by using example programs.

Conditional entry is the concept of the caller task checking to see if the acceptor task is
busy. A variation here is the use of the DELAY statement.

Task attributes reveal the status of the different task parameters. Examples of attributes
are the COUNT attribute, the CALLABLE attribute, the TERMINATED attribute, and the
different PRAGMA's. Also the use of variables of a task type is explained.

STYLE
Concepts of programming style are strictly adhered to for every program submission. The

style principle follwed are from the book Ada Quality and Style by the Software Productivity
Counci!. A summary of the pertinent style principles is created and made available to the
students. Many examples of programs adhering to individual and collective principles are made
available. Where possible, specific examples of dilemmas created by not using the principles (or
abusing the principles) ware also shown. Specific instructions about creating header documenta-3 tion and incode documentation is also given.

ASSIGNMENTS AND QUIZZES
Assignments are longer programming projects done over a period of a week or two

weeks. Quizzes are smaller programming projects done over the weekend. The purpose of an
assignment is to test the implementation of a concept on a large project, whereas a quiz tests the
understanding of subconcepts within a concept or a smaller concept. There are 10 programming
assignments and 5 quizzes given throughout the course. The objective of each of the assignment
is:
Al: Simple program to illustrate control structures (conditional and iteration)
A2: Use of subprograms and parameter modes
A3: Use of arrays and array attributes
A4: Use of the variant record structure
A5: Use of access types
A6: Use of packages and introduction to compilation units
A 7: Use of generics
A8: Use of tasking (simple)

13
I

I A9: Use of tasking (complex)
AIO: Use of low-level representation

The objective of each of the quiz is:
QI: Use of the looping construct
Q2: Use of procedure parameter modes
Q3: Use of string data type

i Q4: Use of multi-dimensional arrays
QS: Use of access types

Quizzes for the advanced topics are not given because of the complexity involved. The
length (lines) of the assignments is about 1500-2000 lines (including documentation) and the
quizzes is 100-200 lines.

In the spirit of the "hands-on" approach, the executable versions of the solutions of the
assignments and quizzes is always made available before the due date. This enables the student
to get a "feel" of the behaviour of the program. Also it motivates them to try to create input data
which would crash the solution. After the due date, the source code of the solution is made
available to the student. Each concept used, and the style principles used, are explained in detail.
The students are encouraged to get printouts of the solution and study them. If there is a
violation of the use of an explained concept (semantic or style) in any subsequent submission,
a heavy penalty is levied.

rn CONCLUSION
Teaching Ada at the senior level poses special problems. The use of the "hands-on"

technique is successfully used to cover the depth and breadth of the features of the language. The
I various programs being used in the process will be made available on a disk at the time of the

presentationI
REFERENCES

I Grady Booch, Software Engineering with Ada, Benjamin Cummings, 1987.
Narain Gehani, Ada: An Advanced Introduction, Prentice Hall, 1989.

I Michael Feldman, Ada: Problem Solving and Program Design, Addison-Wesley, 1992.
Geoffrey Mendal and Douglas Bryan, Exploring Ada, Volume 1 & 2, Prentice Hall, 1992.
Walter Savitch and Charles Petersen, Ada: An Introduction to the Art and Science of
Programming, Benjamin-Cummings, 1992.
Ada Quality and Style, The Software Productivity Consortium, Van Nostrand Reinhold, 1989.

I
I

II

I
I
I
I

APPENDIX D

Syllabus of CS 1 taught in Ada

I

I

I

I Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report

I

I

H Course : CIS 139, Computer Programming 1, Section 101, Marshall University
Instructor : Dr. Akhtar Lodgher

I Term : Fall 1992
Class : Mon, Wed, Fri 1:00 - 1:50pm, Corbly Hall 335
Lab : Wed 3:00 - 4:50, Corbly Hall 436
Office hours : Mon, Fri - 9:00 - 11:0') am, Wed 2:00 - 3:00 pm
Office : Corbly Hall 331B, Phone: 696-2695
Mail box & Secretary: Corbly Hall 310

I SYLLABUS

I GOALS/OBJECTIVES OF THE COURSE:

1. Introduce algorithmic and computational problem solving2. Introduce software engineering methodologies for software development
3. Computational implementation of the above two objectives using a high-level language

I It is important to note that the objective of this course is to teach the algorithmic and the computational
problem-solving process. Prime emphasis is on the process and not the high-level language used to
implement the process. Only those components of the syntax of the language will be taught which arenecessary for understanding and implementing the problem-solving process. The Ada programming
language will be used to teach the problem solving process.

I PREREQUISITES:

Computer Science.: The introductory computer science course CIS 109. Students who have not had CIS
109 will not be allowed to take this course. For exceptional cases, a waiver letter from the chairman of
the computer science department will be required.

Math requirement: Students must be taking in the current semester or completed successfully MTH 130
(College Algebra). Students not meeting this prerequisite will not be allowed to take this course unless

* a waiver letter from the chairman of the computer science department is obtained.

I METHODOLOGY:

This course is designed to be a four credit course. There shall be three lecture hours per week and two
hours of closed lab. In addition, there shall be an open lab where the students can come anytime and do
their exercises.

Topics covered in this course include procedural abstraction, control structures, iteration, recursion,
simple basic data types and their representation, introduction to abstract data types, etc.

For each of these topics, specific problems will be studied that enhance the characteristics involved. These
problems will be very carefully chosen. The solution process of these problems will be studied strictly
from a software engineering perspective - explicit mention of clear specifications, top-down/bottom-up

I CIS 139, COMPUTER PROGRAMMING 1, MARSHALL UNIVERSITY, FALL 1992, SYLLABUS, A. LODGHER Page 1 of 4

I

modular design, testing of design, conversion of design to code and testing of code. A high-level language
will be used to implement the code.

In order that the students graduating from this class have a consistent style, a standard style manual will
be used. It will be mandatory for the students to follow this style manual for program style, coding andI documenting.

I APPROACH:

The following concepts shall be covered, in the sequence mentioned during the course. A weekly schedule
of the topics is attached.

1. An introduction to the process of problem solving using algorithms
2. An introduction to computational problem solving
3. An introduction to imperative-language being used
4. The use of modular design in the problem solving process
5. Problems involving the use of decisions
6. Problems involving the use of repetitions
7. Introduction to error handling
8. Introduction to the concept of data types
9. Problems involving the use of scalar data types
10. Problems involving the use of array data type
11. Problems involving the use of record data type
12. Problems involving explicit specifications and design
13. Problems involving the use of Abstract datm types
14. Problems involving the use of generics
15. Problems involving the use of dynamic data types
16. Problems involving the use of recursion

TEXT BOOK AND MANUALS:

Required:
1. Ada Problem Solving and Program Design, by Michael Feldman and Elliot Koffman, Addison

Wesley, Reading, MA, 1991, ISBN 0-201-50006-X (without disk). Available in college bookstore

2. Introduction to VAX VMS Manual, by Akhtar Lodgher, available at Kinkos

3. Ada Language Design, Style and Documentation Manual, by Akhtar Lodgher, available at
Kinkos, packet 17

4. CIS 139, Computer Programming I, Lab Manual, by Akhtar Lodgher, available at Kinkos

MATERIAL COVERED IN CLASS:

Most of the topics covered will be in the text. Additional material may also be covered in the class. You
are responsible for all the material presented in class and the lab in the form of lecture, notes and
handouts. In case you are not present for a class, it is your responsibility to contact the instructor and

CIS 139, COMPUTER PROGRAMMING 1, MARSHALL UNIVERSITY. FALL 1992, SYLLABUS, A. LODGHER Page 2 of 4

I

receive information about the material presented in that class.

ASSIGNMENTS, LABS AND EXAMS:

There will be 10 programming assignments to be handed in during this course. Each of these will be a
programming project.

Every lab session will require you to do a few exercises in the lab.

There shall be two exams:
MID-TERM EXAM : Oct 14, 1992, Wednesday, 3:00 - 4:50 pm
FINAL EXAM : Dec 10, 1992, Thursday, 1:00 - 3:00 pm

All assignments, labs, and exams are required parts of this course and must be satisfactorily completed
to pass this course. Concepts learned in one assignment or lab are used in other assignments or labs. Thus
a fail grade on any of the assignments or labs may severely affect later performance. The student must
have a passing performance on the aggregate of the assignments, the aggregate of the labs and the
aggregate of the two exams. A failing grade on either of these aggregates WILL result in a fail grade
in the course. Late or make-up exams, assignments or labs WILL NOT BE GIVEN. Assignments and
labs submitted after the due date and time will not be accepted. Failure to attend either of the two exams
WILL result in a fail grade

GRADE DETERMINATION:

20 percent for labs
40 percent for the programming assignments
20 percent for the midterm exam
20 percent for the final exam

The instructor reserves the right to change these values, depending upon class performance and/or
extenuating circumstances.

Letter grades will be used in determining final grades.

COMPILERS:

For all the programming assignments, quizzes and exams, you have to use the Ada compiler available
on the Vax. If you have your own Ada compilers for PC's, then you must upload your programs onto
the Vax. Computer accounts for the Vax, which will be valid for the current semester only, will be given
to each student.

ASSIGNMENT AND LABS SUBMISSION:

- The design (the DFD and Structure chart) of the assignment is due every Friday before 4:30 pm and
must be put in my mail box. If the design is not handed in, the code of the assignment will not be
accepted.

CIS 139, COMPUTER PROGRAMMING I, MARSHALL UNIVERSITY, FALL 1992, SYLLABUS, A. LODGHER Page 3 of 4

- The source code of all assignment programs must be submitted to account (CIS0006@muvms2) before
1:00 pm every Monday. The files must be named exactly as required.

- The compiled listing of the assignment, along with the output must be handed in class at the beginning
of class.

- The lab exercises must be completed and submitted to the above account before 4:30pm Fridays. All
listings and output must be handed in before 4:30 pm Fridays.

- Delay in submission, even by one second, will be considered late, and a grade for that assignment or
lab will not be given.

ASSIGNMENT GRADING:

Each assignment will be worth 100 points, and will be graded as follows:
50 points For the design (DFD, Structure chart)
25 points For programming style (if the code is doing what it is supposed to do)
25 points For a correctly working program

COMMUNICATION:

The Mail facility of the Vax computer will be used to make any general announcements, last minute
changes, etc. It is mandatory that you monitor your mail messages at least twice every day, once in the
morning and once in the evening.

HONOR CODE:

You are expected to abide by the honor code at all times. During in-class exams, no collaboration or
discussion or use of reference aids is allowed, unless otherwise stated at the time the exam is given. All
labs and assignments are to be individual efforts, and no collaboration with members of the class or
outside will be tolerated, unless otherwise stated by the instructor. If anyone sees a violation of the Honor
Code, please report it to the instructor immediately. Any violation of the Honor Code will be reported
to the chairman, the dean and the Honor Committee of the University.

CQOURSE WITHDRAWAL POLICY:

A student who does not attend the class in the first week of classes will be dropped automatically
administratively.

A student who withdraws on or before Friday, Oct 16, 1992 will get an unconditional grade of "W".

A student who wants to withdraw between Monday Oct 19, 1992 and Friday, Nov 13, 1992 will be
evaluated on his or her performance based on the above grading weights. If the student has passing grade,
he or she will get a "WP", else a "WF". This policy will be very strictly enforced.

After Monday, Nov 16, 1992 individual course withdrawls will not be permitted under any
circumstances.

CIS 139, COMPUTER PROGRAMMING I, MARSHALL UNIVERSITY, FALL 1992, SYLLABUS, A. LODGHER Page 4 of 4

I
i
I
I
I
I
I
I

i ~APPE•NDIX E

"Using Ada for a Team Based Software Engineering Approach to CSJ"

i

I
I
I
I
i

I Ada-Based Software Engineering, DARPA Grant MDA972-92-J-1025, Final Technical Report

I

Accepted for presentation and publication in the oroceedings of the llth Ann,,al

National Conference on Ada Technology. March 15 - 18, 1993, Williamburg, VA.

I USING ADA FOR A TEAM BASED SOFTWARE ENGINEERING APPROACH TO CS1

H AKHTAR LODGHER & lAMES HOOPER

Department of Computer Science and Software Development
Marshall University

Huntington, WV - 25755
Phone: (304)-696-2695 Fax: (304)-696-4646

Internet: CIS005@marshall.wvnet.eduH
use PC based compiler environments for program

In the past year, the Computer Science department development. However all work is graded only on
at Marshall University has revised the Bachelor's the VAX.
degree program, and given a very strong emphasisE to software engineering throughout the entire Syllabus
curriculum.' The department decided to use Ada as
the standard programming language for the first few The objective of this course is to develop problem

I courses. In later courses, exposure to other analysis and algorithm development skills. Topics
languages such as C and C + + is also given. The covered in this course include introduction to the
program has two capstone courses, taken in the last entire life cycle of software development, intro-

I two semesters, where a major team project is duction to the use of modular design in the problem
designed and implemented. Hence the need for solving process, procedural abstraction, decision
emphasizing software engineering principles, as well structures, iteration structures, basic data types,H as getting students used to programming in teams array and record structures, abstract data types, use
from the very first computer science course was of generic code, and introduction to dynamic
strongly felt. In this paper, the author presents the structures. Problems that enhance the characteristics

I syllabus and a method of executing the syllabus of of each concept/structure are used. The problem
the CSI course satisfying the above needs. Software solving process is emphasized over language
engineering principles are introduced early on, and implementation. An example of this principle forI after an initial boot-strapping period, the illustrating the looping process is: "Let us study this
programming projects are done in teams. The Ada problem (which requires a loop construct) and
programming language is used. develop an algorithm for its solution" rather than

"These are the looping constructs available in this
Introduction language. Let us see the kinds of problems that can

be solved using these constructs".
CS 1 is taught as a 4 semester-hour course in a 16
week semester. The students attend three hours of The solution process of these problems is studied
lecture a week and two hours of closed lab. strictly from a software engineering perspective -
Concepts introduced in the class are reinforced in a conducting a requirements specification and analysis,
closed lab setting. An open lab is also available for performing a modular top-down design, development
students to complete their lab exercises and of module specifications, adherence of code to
programming projects. The Ada compiler on a design. From the very first class, the students are
VAX/VMS system is used. Students are allowed to told to perceive themselves as software engineers

I

and designers, not programmers. Other advantages of the hands on approach include
increase in student participation (answering "what-if"

A team approach is used for programming questions), increase in understandability and increase
assignments - two students per team. One person of in programming confidence. However, this approach
the team does the design and the other person places a tremendous burden on the instructor. The
develops the code based on the design. For the next development and preparation of pedagogical
assignment, the roles are switched. This approach examples takes a lot of time. Instruction materials
forces the designer to conduct a proper analysis and associated with text books are not available in
design. The "coder" has to follow the design, electronic form. Such material must either be
making only necessary changes, if required, scanned or typed in and fine-tuned depending upon

the audience.

-Approach
Course contents and weekly topics

The "hands on" approach
Table 1 shows the classroom topics, the assignment

The amount of material covered in the class is quite and lab topics on a weekly basis. It is assumed that
large. To ensure that enough exposure is given to the student has little or no knowledge of the
each topic, a "hands on" approach to instruction is operating system. However, it has been found from
used. Programs which exhibit the characteristics of past experience that students who have had an
a particular concept or structure are made available introductory course on computers in high school are
to the students. These programs are displayed, more patient and quicker in learning the new
explained, and executed in the classroom, on a operating system.
computer using the overhead video projector. Unlike
the traditional "chalk-and-talk" approach, this The first two weeks introduce the entire system life
approach not only shows the syntax of the structure, cycle of software development. A top-down analysis
but also shows how the structure is used in the and design methodology is discussed next. The
context of a larger solution process. Minor process of converting a problem statement to
variations and nuances of the structure are also requirements specifications, analysis and design for
explained. simple problems is explained. Currently the analysis

is done using data flow diagrams (DFD's) and the
Another important advantage of this approach is to design using structure charts. A design manual2

show the possible incorrect ways of using the which explains this process in a step by step fashion
structure. When a student starts using a new is made available. The issue of using object-oriented
structure, the chances of him or her using it design is under consideration.
incorrectly are high. By using incorrectly formed
structures (both syntacticaly and semantically The use of functions, procedures and packages is
incorrect), the error messages generated are shown. introduced early on, in the context of modular
The mechanism of using the error messages to trace design. All the intricacies of procedures and
the error in the structure can be demonstrated. packages are not covered at this point. Only the

concept and their usage in simple contexts are
Class notes in electronic form, as well as all covered. The branching and looping constructs are
classroom demonstration programs are made covered next.
available to the students (on a mainframe) before the
class. The students are encouraged to bring a Exception handling and the more detailed use of
printout of the notes and the programs to the functions and procedures are then explained. The
classroom. This allows them to spend time listening concept of abstract data types is introduced. The
and participating in the classroom discussion and not array and record structures are covered next.
be bogged down by the task of taking notes. Examples of the use of array and records to

I

I implement abstract data types are explained. It is at the work done by him/her. Each assignment
this point that a more detailed explanation of is worth 100 points.
packages, passing execptions, etc., are discussed. 2. If the design document is perfect, then the

designer gets 100 points.
The concept of code abstraction is explained using 3. If the code follows the design and is perfect,

I the generic structure on a sorting example. Finally, the person in charge of code gets 100 points.
an introduction to dynamic data structures is given. 4. If the design is correct, and the code is
The creation of dynamic variables and their use in incorrect, points are taken off from the

I creating linked lists and traversing linked lists is coder.
covered. It should be noted that the concept of 5. If there are flaws in the design document,
recursion is not introduced in this course, the designer loses points.

6. If there are flaws in the design, and the
Assignments and laboratory exercises coder codes it following the design (resulting

in badly designed code, though correct) the
I A total of eight programming assignments are given, coder is penalized a little for not attempting

Of these, the first three are of an introductory nature to fix the design
and are done on an individual basis. The latter five 7. If there are flaws in the design, and the

I assignments are done in teams. The first assignment, coder fixes the design the coder gets
which is not given until the fourth week of classes, additional bonus points for the extra effort.
is of the nature of a "hello world" program. The 8. The coder shall EXPLICITLY point out the

I second assignment involves some output formatting changes in design.
and the third assignment is based on the use of 9. The coder shall not unnecessarily change the
selection statements. design. If this is done, points are taken off

from the coder.
Each assignment requires the preparation of a design 10. If design is submitted but code is not
document. This document consists of: (a) the submitted or does not work then the

I problem statement (b) requirements specifications (c) designer gets the points for his/her design,
analysis - the data flow diagrams (d) design - the coder does not get any points for his/her
structure chart showing the modules (e) module code. The coder is classified as a "BADE design specifications indicating the input, output and PERSON".
processing of each module. The design document is 11. If design is not submitted, or is so bad that
mandatory and must be submitted before starting the it is not worth following then the designer

I code. The code is based on the design, and the close does not get any points for the design. The
relationship between the structure chart and the designer is classified as a "BAD PERSON".
actual code is emphasized. The simple nature of the The coder then has to do both the design

I first three assignments helps in ironing out the and the code. If the coder does just the
details and links between design and code. code, he/she gets 100 points for the code. If

the coder also does a good job on design,
I Beginning with the fourth assignment, the size and then bonus points are given to, the coder for

the complexity increases. At this point the class is the design.
divided in teams of size two. The members are 12. If a member is classified as a bad person

I chosen using a draw. One person is responsible for twice, then on the first chance available, that
the design document and the other is responsible for member is dropped from the team and the
the code. The roles for the next assignment are then good person combined with another good

I switched. The following policy for grading team person.
based assignments is set: 13. If a team member drops the course then the

left over member will be combined with an
I 1. Essentially, each person gets the grade for available member. If such a member is not

I

available, then the remaining member must concepts learned in lhe classroom. The number of
do both the design and the code. assignments may be reduced by one or two by

combining concepts. The CS2 course based on this
The team policy ensures that the designer conducts approach of CS 1 is currently under preparation.
a proper analysis and design and the coder
understands and follows the design. Initially, some References
friction between the team members was observed,
but after a while, the members were able to work 1. Hooper, James, "Planning for Software
around their schedules. For larger assignments, parts Engineering Education Within a Computer
of the design and code are given by the instructor. Science Framework At Marshall University",

Sixth Software Engineering Institute
Some amount of class time and lab time is devoted Conference on Software Engineering
to discussing the assignments. The executable Education, Oct 5-7, 1992, San Diego.
solution of each assignment is made available beforeH the due date. This enables the students to understand 2. Lodgher, A., "Ada Language Design, Style
the input and output format. The students can a;so and Documentation Manual", Department of
test the performance of their program on certain CSD, Marshall University.

I input data and compare it against the instructors'
solution. After the assignment is due, the solution of 3. Lodgher, A., "CSI - Computer
the assignment is shown to the student, and the Programming I Lab Manual", Department3 design and code are discussed. of CSD, Marshall University.

The laboratory exercises are conducted in a closed Akhtar Lodgher (Ph.D 1990, George Mason
I laboratory environment. A lab manuals which has University) is an Assistant Professor in the

exercises based on the text and class material is Department of Computer Science and Software
made available. The objective of each of the Development (CSD) at Marshall University since
exercises is explained first and then the students are Sept 199C. His teaching and research interests are in
allowed to complete the work. The first few lab the fields of software engineering, data structures,
exercises familiarize the student with the operating algorithms and object oriented programming.
system and the Ada compilation environment. Most
of the other lab exercises consist of incomplete or James Hooper (Ph.D 1979, University of Alabama,
incorrect programs which the students have to Birmingham) is a visting Professor, from the
complete, correct or enhance. University of Alabama, Huntsville, occupying the

Arthur and Joan Weisberg Chair in Sofr7,ae
Conclusions Engineering at Marshall University since Fall 1991.

His teaching and research interests include software
The CSI course was taught by the author, using the engineering (especially software reuse and the
above syllabus, for the first time in Fall 1992. The software process), programming languages and
author has taught the course many times in Pascal discrete event simulation.
and he observed that the software engineering/Ada
combination led to better solution designers.
Enforcing the completion of design before starting
code helped the students understand the solution
process much better. They were able to find more
flaws in the design. The modular design and
development helped them to quickly find problem
areas and fix them. The closed lab environment
definitely helped the students in reinforcing the

044)

00
4)0 4)4) ca

ca4 < -

tn0 oO ~-~ :

*0 = .. 4) 4) 4

0cc

00

6 <~co co

00 :2 00

1! 0

>4 040l7
lb .~ 0.0

w
2j

I 0

- 0 0

00

a. .2

-frw

-41. 00

0 to to

< t

4):

<l a. <-0
4C - C-0

a tl2
W ou

U3 > ~ <

U
I
U
I
I
I
I
I
I

APPENDIX F

I Syllabus and team projects for standalone Software Engineering Course

I
I
I
I
I
I
'1

I Ada-Based Software Engineering, DARPA Grant MDA9?2-92-.J-1025, Final Technical Report

ri

I
COURSE SUMMARY

CSD 479/579 SOFTWARE ENGINEERING

Spring 1993

Monday 6:30 - 9:00 P.M., Corbly Hall Rm. 354

I INSTRUCTOR: Dr. James W. Hooper
OFFICE: Corbly Hall 331A (soon, 334A)

Telephone 696-2693
email: CIS010@marshall.wvnet.edu

I OFFICE HOURS: MW 2:00 - 4:00 P.M., and by appointment

REQUIRED TEXTBOOK: Sommerville, Ian, SOFTWARE ENGINEERING, 4th ed.,
Addison-Wesley, 1992.

CATALOG DESCRIPTION: Current techniques in software design and
development using Ada, Modula-2 or C for software projects. Formal

I models of structured programming, top-down design, data structure
design, object-oriented design, program verification methods.

I PREREQUISITES: CIS 239 and CIS 320

COURSE OBJECTIVES:
"* Provide a good grasp of state-of-the-art approaches to the

development and maintenance of large software systems
"* Provide practical experience in the team approach to software

engineering
" Emphasize software requirements determination/specification,

and software design.

GRADE RANGES:
MAKEUP OF GRADES: A: 90 and above

Mid-Term Exam 30% B: 80 - 89+
Team Project 30% C: 70 - 79+
Final Exam (comprehensive) 40% D: 60 - 69+

F: Below 60

I LECTURE TOPICS (with references to textbook chapters)

Introduction (Ch.1)
Human Factors (Ch.2)
Ada and Ada PDL--brief overview (Appendix A)
Software Requirements

Requirements Definition (Ch.3)
System Modelling (Ch. 4)
Requirements Specification (Ch. 5)

Software Design
Overview (Ch. 10)
Object-Oriented Design (Ch. 11)
Function-Oriented Design (Ch. 12)
User Interface Design (Ch. 14)

Effective Programming (Ch. 15)

I -1-

LECTURE TOPICS (continued)

I Software Reuse (Ch. 16)
Tools and Environments

CASE Tools (Ch. 17)
Development environments (Ch. 18)

Verification and Validation (Ch. 19)
Software Management

Overview (Ch. 25)
Maintenance (Ch. 28, partial)
Configuration Management (Ch. 29, partial)
Quality Assurance (Ch. 31)

TEAM PROJECT
Each member of the class will be assigned to a small team (made

up of three or four students) to carry out a software engineering
project. The instructor will provide a handout of an assignment for
the teams. Each team will organize itself relative to the assignment,

I conduct life cycle software activities (requirements specification,
high-level design, ...), make in-class presentations on the work
performed, and fully document results.

I ASSIGNMENTS FOR CSD 579
Graduate students will be required to carry out additional

I reading assignments (journal articles or book chapters), and to submit
written reports and make in-class presentations on the material.

EXAMINATIONS:
Mid-Term Exam: Monday, March 1, 1993, regular class period
Final Exam: Monday, May 3, 1993, regular class period

I
I
I
I
I

--2--

I
I
I

ROUTE PLANNING SYSTEM (RPS)

CSD 479/579 Team Project
Spring Semester 1993

Dr. J. W. Hooper, Instructor

PROJECT SUMMARY

Your small software engineering firm has obtained a contract with the
Transportation Department of the local municipality to plan and
develop a "route planning system" for their use. Their intention is
to make use of this system to determine the "best" route for vehicles
to take in travelling between locations within the city. Police and
fire departments would use the system, as would the local rescue/
ambulance service, utilities crews, and likely many others.

In considering this system, it appears that it could become a viable
commercial product for your company, provided that you develop it
with sufficient generality that other cities and regions can be
equally well accommodated, and with flexibility as to intended use.
This generality and flexibility will be important even iti the initial
use, since new streets will be added occasionally, others will be
closed, etc., and since the exact nature of all uses cannot be
foreseen. It also appears that it is no different conceptually to
represent roads in a very large region (e.g., the state of West
Virginia) than within a city, so planning with this in mind should
greatly increase the possible market for your product.

I Representation of streets/roads/interstate highways and their
characteristics is key to the success of the system. Such aspects as
one-way traffic flow, distances between points, expected travel time
on road segments, street addresses, road closings, current traffic

I jams (e.g., a train currently blocking a crossing), streets especially
busy at "rush hour", streets to favor as major thoroughfares, "scenic
routes", etc., must be representable. Flexibility must be provided to

I add unforeseen needed characteristics for road segments.

Ease-of-use of the system is critical to its success, so "human
factors" must be seriously considered in determining the user
interface. The typical user will be waiting for a response, so speed
of execution will be important. The fundamental functionality of the
system will be to determine a route from point A to point B. Means to
represent this information should be carefully considered; e.g.,
showing it in a color graphics display; or providing step-by-step
instructions ("take third avenue westerly to eighth street east, turnI left, proceed to eighth avenue, ... "), etc. Consideration should also
be given to the possibility of a route description being supplied as
processable input to a user's software (e.g., to software used to

I model the handling of hazardous waste, for which appropriate route
selection is only one aspect, with other aspects including detailed
representation of material handling, disposal, etc.).

I- -

I Functionality should also be provided to represent certain constraints
or guidance; e.g., certain street(s) that must be avoided; maximum
travel time permitted; two stops to be made--give "best" routing to
points B and C, in either order. "Best" route could mean shortest,
fastest, most scenic, all four-lane roads, ... , and should be
specifiable by the system user. In addition to "end user"
functionality, means must also be provided to easily alter the
representation of streets and roads, and their characteristics,
maintained in the database. Capability to alter the database should

I be limited to a database administrator.

In planning the system, it will be necessary to determine hardware
* configurations to accommodate the system, perhaps with variations for

the nature of eventual use (e.g., a portable PC for mobile use, with
some necessary limitations on territory size and nature of user
interface; an upper-end PC or workstation for large territories, color
graphics output, etc.).

The first step in carrying out the project is to identify and document
a candidate set of system requirements, guided by your understanding
of what the municipality needs, and what other potential customers for
the resulting product may need. It should be noted that the
municipality has no interest in what features other prospective users
of the system may want, and will not be willing to be adversely
impacted by planned generality/flexibility of the system.

After the requirements are reviewed by municipality representatives,
and altered as necessary, system and software design will take place,
followed by implementation, testing, and installation of the initial
system.

SPECIFIC PROJECT TASKS

Each team is to perform the following tasks:

* Determine a schedule for carrying out this project, and submit
to the instructor; include proposed dates for reviews and
submission of documents

* Determine and Specify Requirements (carefully document; include
any feasibility assessments; include description of any trade-
off studies, with rationale for decisions reached)

* Conduct a Requirements Review (in-class presentation)
_I * Conduct System and Software Design

* Determine allocations to hardware and software (and document;
justify allocations; include any trade-off studies)I * Design the User Interface (and document)
(Possible activity--not required: prototype some aspects of
the User Interface, to help assess candidate approach(es))

* Do high-level software design (to the module level; document;
include any trade-off studies on design alternatives)

* -2-

I

"* Conduct a Preliminary Design Review (in-class presentation)
"* Do detailed software design (Using Ada/PDL; document)
"* Conduct a Critical Design Review (in-class presentation)

* Submit a final written report; include in it all the above-
required information. Document changes resulting from reviews,
and the reason for each change. Also describe the "dynamics"
of your team--i.e., the role of each individual team member, by
name, and why the work was so allocated; describe how the team
functioned collectively, the decision-making process, the
way team meetings were conducted, etc. include "lessons
learned"--including successes, and "if we had it to do over
again, we would ... " The Final Report is due at the last
regular class period.

* Give an oral report to the class, presenting an overview of
the team's "dynamics" and "lessons learned"

-3-

I A LIBRARY SYSTEM TO SUPPORT SOFTWARE REUSE

CIS 479 Team Project
Spring Semester 1992

Dr. J. W. Hooper, Instructor

I BACKGROUND
Software engineering tools and methodologies are aiding and

expediting generation of quality software, and considerable progress
has been made since the inception of software engineering in the late
1960s. However, demands for software are growing much more rapidly
than our ability to create it. One unfortunate aspect of the

I situation 4a that much software is being developed that need not be,
if only efficient ways of reusing existing software were available.
Estimates are that as much as 85% of the software in someI organizations is being re-created--to say nothing about duplication
between organizations. The re-creation of software carries with it
the usual implications of cost, delays, and introduction of errors.

Considerable research activity is underway in software
reusability, and interest is growing in obtaining efficient methods,
in view of the potential high pay-off if effective reuse methods were
in place. The U.S. government and many companies are beginning to

I undertake experimental projects in software reuse, which will take
several years to reach "payoff", due to the magnitude of development
involved. The assumption underlying this project is that significantI improvement can be achieved in the short range by use of a system
consisting of a library of carefully-selected components, with
effective means for locating library components corresponding to
specified criteria, and retrieving a component for reuse. A few
commercial tools are beginning to appear, to help software engineers
find potentially-useful existing components, and to compose a system
from the reusable components. The emphasis is on libraries of well

I described, useful, and reliable components, and the availability of
environments to help programmers find and understand existing software
components.

I PROJECT GOAL
The overall goal of this project is to specify and design ai system for retaining potentially-reusable software components, for

searching the library of components for a component (or components)
meeting specified criteria, and for retrieving a component for
subsequent use.

FUNCTIONAL OVERVIEW OF THE SYSTEM

1. Component Library
At the heart of the software reuse system will be the Component

Library, a repository of components deemed worthy of retention forS potential reuse. Each component will include a number of mandatory
descriptive items in an online database, with uniform item formats for
the components. Each component is expected to contain the following
items, among others:

I

1. Name 13. Observed characteristics
2. Taxonomy class / subclass (size, speed versus input,
3. Keywords accuracy versus input)
4. Brief technical summary 14. Developer(s) of the component
5. Method of solution 15. Individuals who have used
6. Rationale for choice of the component, their feed-

solution method back on errors, degree of
7. Requirements Specification satisfaction
8. High-Level Design 16. Test cases / results
9. Detailed Design 17. Environment required

10. Source code / language used (special hardware,
11. Input Specification / software, communications)

Preconditions 18. Restrictions
12. Output Specification/

Postconditions

Note that this information could be organized in various ways.
For example, the entries could all be contained in a single file
element, or a header element could be used which contains pointers to
other file elements. Also note that a requirements specification
could correspond to multiple detailed designs (e.g., for individual
subsystems), and that a high-level design would likely correspond to
multiple detailed design components. It could be that components could
be included in which different solution methods are used for the same
requirement--for reasons of required accuracy at the expense of
greater or lesser processing time, etc. The approach taken should
also accommodate updating of the entries; e.g., when user feedback is
obtained.

The nature of the reusable components themselves is very
important--e.g., their size and range of functionality, assumptions
about non-local referencing and the nature of component interfaces,
etc. We will discuss some of the issues in class, but they are not
a primary concern of this project. I.E., you may take the view that
you are creating this library system for the use of others, and it is
their decision as to what stipulations to place on the components in
the library.

Organization of the Library is an important issue, especially as
it pertains to the search process, based on dpecified criteria. In
order to achieve efficient search for Library components, it is
necessary that the capability be available to specify a taxonomy for
available components -- i.e., a classification scheme with classes,
subclasses, etc. For example, classes could pertain to an application
area (accounts payable, accounts receivable, billing, ...), to a
functional area (sorting, searching, ...), etc.

2. Component Search and Retrieval
The user should be permitted to specify various criteria and

characteristics, if known, in conducting the component search process.
The user could directly specify component name if known, and examine
the information for the component. He/she could proceed in a
"browsing" mode, in which components within a specified taxonomy class
are examined; or, specify a number of keywords, and be directed to
components which satisy some or all of the keywords; or specify that a
high-level design is to be obtained; or, specify a solution method,
and a search would occur to find a component using it; or, specify the

2

name(s) of the developer(s), or the name(s) of previous user(s); or,
components implemented in a specified language -- among various
possibilities; and, combinations of criteria could be specified (e.g.,
components for numerical integration, implemented in Ada). A simple
query language should be available to the user, to ease and expedite
the search process -- i.e., as a means to express the criteria for
selection. A simple query language is to be designed (or an existing
one chosen) as part of this effort.

Having selected a component for potential use, the user could
direct that the source code be moved to his/her work area, for use "as
is", perhaps, or for modification and reuse. Examples of modification
could be alteration of a procedure name, or a change to array
dimensions in the header (e.g., in Pascal code). The user should have
the capability to retrieve other stored information for the component
if desired, such as the detailed design and test cases.

3. User Interface
Considerable emphasis should be placed on an effective

interactive user interface. The user will, by means of interface
mechanisms, conduct the functions of component search and selection;
also, components may be added to the component library. It is
important to insure integrity and security of the component library.
Thus effective methods must be provided to ensure that only authorized
users may make use of the system, with more than one level of
authorization necessary. Clearly not everyone should be able to gain
access to the library; and most users should not be able to alter
components in the library, remove them, or place additional components
into the library--although it is necessary that authorized personnel
be able to make additions, deletions, or alterations.

It would generally be that software reuse would be considered in
the framework of problem solution--software design and development.
Thus the user would presumably determine to use available modules, or
modified available modules, to satisfy certain functions, and generate
new modules for other functions. Thus, the user would be generating
detailed designs for the new modules, and integrating existing
detailed designs (or, modified existing designs) for modules being
reused. And, as code is being generated, some of it would be newly-
created, while some would come from reusable components. There are
practical, logistical considerations involved in these activities.
Ideally, one would have a "software engineering environment" which
provides integrated support for the entire life cycle, using
database(s) accessible from all phases, with tools supporting the
phases, and with an overall methodology. In such a setting, the ideal
approach would be to integrate reusability into the methodology, and
to integrate tools to support reuse. In the current project we cannot
be so ambitious. However, there are some choices to be made relative
to the relationships of the various activities of the reuse
environment. For example, should such activities as component
examination and alteration be done by direct invocation of a text
editor, after having located a candidate component (or components), or
should it be possible to invoke an editor as one option from a "reuse
screen". And, similar questions relate to how to effect integration
of reuse source code into a work file of source code being developed,
etc. Consideration should be given to such questions, and decisions
made and documented, with the rationale being given also.

3

4. Hardware Considerations
No pre-determined computing hardware is assumed. Comparative

cost considerations for hardware should have some emphasis. When
considering interactive interface design, consideration should be
given to the effectiveness of mechanisms for user interaction, for
example (e.g., mouse, light pen, keyboard ...). Specific decisions
are not necessary as to commercial hardware components, but necessary
characteristics should be determined and documented. If a certain
device is deemed especially appropriate for ise, it should be so
stated, with rationale.

SPECIFIC PROJECT TASKS

Each team is to perform the following tasks:

"* Determine a schedule for carrying out this project, and submit
to the instructor; include proposed dates for reviews and
submission of documents

"* Determine and Specify Requirements (carefully document; include
any feasibility assessments; include description of any trade-
off studies, with rationale for decisions reached)

" Conduct a Requirements Review (in-class presentation)
"* Conduct System and Software Design

"* Determine allocations to hardware and software (and document;
justify allocations; include any trade-off studies)

"* Design the User Interface (and document)
(Possible activity--not required: prototype some aspects of
the User Interface, to help assess candidate approach(es))

"* Do high-level software design (to the module level; document;
include any trade-off studies on design alternatives)

* Conduct a Preliminary Design Review (in-class presentation)
"* Do detailed software design (Using Ada/PDL; document)
"* Conduct a Critical Design Review (in-class presentation)

"* Submit a final written report; include in it all the above-
required information. Document changes resulting from reviews,
and the reason for each change. Also describe the "dynamics"
of your team--i.e., the role of each individual team member, by
name, and why the work was so allocated; describe how the team
functioned collectively, the decision-making process, the
way team meetings were conducted, etc. Include "lessons
learned"--including successes, and "if we had it to do over
again, we would ... " The Final Report is due at the last
regular class period.

"* Give an oral report to the class, presenting an overview of
the team's "dynamics" and "lessons learned"

I

